FREE SHIPPING FOR ORDERS OVER $100 IN CANADA or $125 IN THE US.

CR10 V3 Fix – Cable Connection Supports



In this video I address the unsupported cables for the hot end assembly to help prevent their premature wear and tear.  This is a simple mod that should help keep this machine running for much longer in the future.

Files for Download

Transcript

Hello everybody and welcome to the 3D printer Modding series. Today we’ll be addressing the issue with the cable for the hot end assembly of the CR10 V3. If any of you may have noticed the cable connections don’t have any support and there’s a high probability that the movement will cause a failure in the connection. The cables which connect to the hub are also another potential issue since they don’t have any support either. Since I would like this machine to last as long as possible, I will be making a couple of modifications to address these issues today. As always, do this modifications at your own risk and I’m in now way responsible for any damages which may occur.

  So like most modifications this one went through a couple of alliterations before a final version was determined. Since the metal supports for the xz hub were the same design as the V2 model I decided to use this to my advantage. I initially designed a mount which surrounded the cabling however this proved both difficult to mount as well as risky to force the cable within the support. It was for this reason that I switched to a open design which allowed me to use Zip ties to fasten the cables to the guide. For the hot end assembly I knew I wanted something which simply slipped over the direct extruder motor. After taking precise measurements I created a box like shape to a encompassed the motor while still keeping as much of it open to prevent overheating issues. I also designed it to wrap around the connector so I would able to add zip ties as well. Learning from my previous mistake, I made sure to keep an open design.

  After my first test I did discover one drawback which I hadn’t initially taken into account. While testing just how high up I could move the printer in the Z axis I found out that my modification did remove some of it’s Z height. Wanting to reduce this drawback as much as possible I then redesigned both the parts to help resolve this. With the new design I was able to comfortably reach a total Z height of 395. I also made sure to better support the cables with an extra bowden tube that I had lying around however you may be able to use a spiral cable wrap instead should you have some available. Very important to note is the fact that you’ll have to move the support bar on the left hand side of the machine to accommodate the increased size of the nozzle assembly. To do this, you’ll want to completely remove the top portions and bottom portions. For the bottom you’ll want to add some washer’s to increase the distance at the base. You’ll then want to move the nozzle assembly as far up as you can while also moving as far left as possible. This will make it easier to gage where to place the new connection points. In my case, I hand to realign the live bolt and move the pull rod connector over so that only one support bolt was still in place. Instead of using the spacer which came for the live bolt, I removed this and replaced it with a M5x12 screw. As long as this is properly tightened you should have no problems getting this secured in place.

  With this completed it was now time to change the Z height in Cura and begin a test print. As expected the test prints were very similar to those done previously. Since I had a 0.8 nozzle these were the results that I ended up getting. Since I mostly use the larger machines for functional parts or prototypes I often need these to complete at a farter rate.0.2

  Although I could leave this machine without these additions, this will hopefully help increase it’s longevity. As someone who uses their machines quite often this is an important feature to have since they’re an important business investment. For those of you who use yourself for both personal and professional use, I hope this also allows you to keep your machines working for a much longer time period.

CR10 V3 Fix – Filament Sensor Mod



In this video I take the existing filament sensor which has a habit of catching and replace it with a modified version which works a lot better.  I go through the installation and design process of how this modification was made.

Files for Download

Transcript

Hello everybody and welcome to the 3D printer Modding series. In today’s video we’ll take the notorious filament runout sensor that comes with the CR10 V3 and modify it to be more fluid in how it lets filament pass through it. I also have a follow up video which addresses a proper cable guide for the hot end so keep an eye our for that video in the future. As always, please do this mods at your own risk and I’m in no way responsible for any damages that may occur.

  So as i mentioned in my previous review of the Creality CR10 V3, the sensor was very much holding back the potential for this machine. Because of the initial design for the filament intake, it caused a severe amount of friction to occur which in some instances prevented the proper flow of filament through the nozzle. Before trying to create a new housing i did run a test to see if I could simply replace the existing sensor with one that I had lying around however this produced an error which prevented the printing process from starting. Instead of modifying the firmware, I decided to change the housing which I believed to be the main cause of the issue. The electronics themselves were very well designed so doing this also make this modification easier for other’s to undertake.

  So the very first step was to the remove the existing component and open it up to see what was inside. Luckily, this was fairly easy to accomplish because of how it was assembled on the machine. Once you remove the 4 screws holding it in place you are immediately greeted with the electronic components. To make my life easier, I did decide to remove the filament stand, however this is not a necessary step.

  Once the electronics were visible I removed the two screws holding them in place so that I could get a better look at the housing that already existed on the machine. The first step was the remodel the area where the sensor would be sitting and once that portion as completed I was then able to focus on the entryway for the filament. The issue with the stock version is that the angles were too sharp and this was what was causing the large amount of friction. Also the alignment was slightly off and this caused the filament to get stuck in the switch portion of the mechanism. In order to address these issues, I created a gradual entry way for the filament the pass through and changed the point where the filament intersected with the switch. This produced a much more gradual entrance which reduced the friction significantly.

  With this out of the way it was now time to create the connection points in which the two halves of the sensor would meet and combine to make the shell. I then added the bolt indents to further make this easier to assemble. So after a couple of prototypes I finally had the final version that I would be installing on my machine.

  IF you decide to install this one your own machine you’ll need to do the following. You’ll need to add the two screws to hold the switch in place after which you’ll add the screws and bolts for the housing. In my case I only had longer screws available so I ended up only installing two of these across from each other. This also allowed me to place a much longer screw going in the opposite direction to attach this to the sensor mount. I added a bolt behind it just to make sure that it didn’t come off latter on. With that completed I installed it onto the machine and quickly tested it with both flexible and PLA filament. After doing my first print I can say that it’s still working quite well and I’m happy with the results. This was the resulting test cube which was printed with a 0.8 nozzle and scaled to 130%.

  Although this may seem like a simple mod I found this to be one in which I appreciate the most since the friction being produced has caused my filament to break in mid print on certain occasions. Since the filament sensor is mounted away from the nozzle it doesn’t register a break in the filament and keeps on printing which has been a issue in the past. With modification in place it should prevent this from reoccurring in the future.

1.75 to 2.85 – Changing Filament Type I3 Mega



Link to ThingInverse Files

In this video I explain the process of changing your FDM printer to take 2.85 filament.  The video also discusses whether or not making this mod might actually be worth it.  In This video I modded my I3 Anycubic Mega to take 2.85 instead of the standard 1.75.  I did this to see how complicated this process might be and some of the issues that could result.  This video explains the process and my findings.