FREE SHIPPING FOR ORDERS OVER $100 IN CANADA or $125 IN THE US.

CR10-V3 – All Metal Upgrade + CR Touch





Transcript

Hello everybody and welcome to another video tutorial. Today we’ll be upgrading the machine to use an all metal hot end thanks to a couple of mods that I designed myself as well as installing the new CR Touch which is crealities BLTouch alternative. Full disclaimer, this is not a paid sponsorship, I was sent the CR Touch free of charge for testing purposes and the opinions that you will see here are my own. Furthermore, undertake this at your own risk, and I’m in no way responsible if damages may occur as a result.

Before starting to design anything, I first needed to see how the hot end was mounted to the machine. So this meant dissembling the unit and seeing which portions could be reused and which one needed to be changed. For the components that I’m building today, I did find it easier to do the test prints with PLA, so long as I monitored the temperatures. I then used my SLA printer to print with engineering materials.

I went with the E3D V6 direct kit since even with the exchange rates it came to almost the same amount as a knockoff and I knew the quality that I was getting. Another benefit was the online resources that they provided to the user. They had diagrams which included important measurements and even had the steps for modifying the firmware. So I knew I was going to have the proper thermistor settings enabled without having to do additional research.

With all of this information, I began designing the adapter for the hot end itself. Now in the stock version, the main cooling fan was attached to an outer case which made nozzle changes more difficult because of the lack of access. So I knew ahead of time that I would need to keep this area as clear as possible. What I ended up modelling was an adapter which fit into the stock gear section of the filament feed and used a Zip tie to help ensure that it remained in place. Although the zip tie wasn’t necessary, it was an additional precaution to make sure that everything held together.

While the finished part was printing on the machine, I began making the changes to the firmware. I changed the thermistor type to number 5 which was the 100k thermistor -ATC Semitec 104GT-2. With that portion changed, it was now time to set the maximum Temperatures for the hot end. Because this was a higher temperature hot end, it was important to take into account how the firmware worked. For safety reason, the firmware automatically reduces the max temperature reading by 15 degrees on the LCD screen. So to fully tighten the nozzle, we’ll first have to increase the max temperature by this amount and lower it back down. With this hot end, the maximum temperature is 285 degrees Celsius. So if you do this, you’ll want to make sure that you turn back down the maximum to 285 degrees after properly tightening the nozzle. I made a previous video showing how to do nozzle changes on this machine, which I’ll include a link in the description below.

By this point I had already decided that I would mount the cooling fan to the same screws as the CR Touch, therefore I modelled and began testing this portion together as soon as possible. With the mount for the CR Touch, there’s a little of play involved, therefore it’s important to keep this in mind when installing your part. In my first design I created only one cooling fan however the parts weren’t cooling properly in overhanging areas, so I redesigned this to a secondary output that ran onto the other side of the nozzle and although the designs don’t necessarily match they do however allow for minimal material use and a more streamlined path for the air to flow.

At this point, I began installing the finalized parts that I had 3d printed and replacing the BLTouch with the CR Touch. One thing I noticed was that in my case, I had to use trial and error to manually set the Z-Offset for the machine. To do this, I’m going to level the bed by going to “Prepare” + “Bed Levelling”. Afterwards, I went to “Prepare” + “Move Axis” and lowered the nozzle to the zero mark. Next, I went to “Control” + “Motion” + “Z-Offset” and began tweaking the value until I got a perfect first layer. Just make sure to save your settings otherwise it won’t be stored, so go back one menu after setting the Z-offset and choose “Store Settings”. This meant quite a few failed test prints, but was the best solution I found given the issues I encountered. For some reason, the nozzle would hit the bed whenever I used the proper method of calibration. The only difference was that I had compiled by own version of the firmware by using the source code which had been provided by Creality. In future, I would like to see them update this source code to reflect the changes which may have occurred as well as updating Marlin to one of it’s more recent releases. Other than that, I didn’t have any problems with the CR Touch, so I’m hoping that they’ve addressed the quality control issues which were present with the aftermarket BLTouch.

Now, to make things easier for any of you who may wish to try it out for yourselves, I’m making both the files and the firmware available for download on my ThingIverse Page. So would I say that the CR Touch and Hot End Upgrade was worth it in the end. I would say that yes, depending on how you intend to use this machine. I’m personally swapping out materials fairly constantly, so not having to worry about the bed levelling because of the temperatures changes makes the CR Touch Worth it in my case. As for the hot end upgrade, well that depends on the materials you intend to use. I do want to use some of my higher temperature materials, and I’ve been unable to utilize because of the limitations of the hot end, so once again in my case this does become relevant.

Also, for those of you who actually want to use this video as a guide, keep in mind that I will be posting the transcript on my main website to make it easier to follow along. Alternatively, please feel free to slow down the video by hitting the gear icon on the bottom right-hand corner of your screen and to changing the speed settings.

If you want to support this channel, please feel free to check out some merch on my website. Thank you for watching, and I hope to see you guys soon. Thank you and take care.

Creality Smart Kit is it Worth It?





Transcript

Hello everybody and welcome to another video review. Today we’ll be taking a look at the Creality Smart Kit which was sent to me for review purposes. No money has exchanged hands, so this will represent my personal opinion on the device and will be followed up with a detailed video discussing what the company could do to improve the follow-up version of this product. I personally like to see companies improve, so I hope they will take the information I present in these two videos to create something that pushes innovation. I will be posting a link in the description below as to where you can actually purchase this device, however I strongly recommend you watch until the end of the video before you even click on that link.

So what is this set of devices supposed to do exactly. Well, the intended goal is to be able to easily control your printer remotely while being able to check on the printing status visually. Now the idea behind this product is good however as we’ll discuss latter on in this video how the implementations just isn’t that great.

So this kit includes the Creality Wi-Fi Box along with a webcam and before starting anything I wanted to so see if any of these devices would work offline. During my tests, and attempts at hacking the devices, I discovered quite a few important details. First off the camera is pretty standard, so you can actually use like a normal webcam and although the video quality is too bright to begin with, once you adjust your settings it’s actually a decent camera. As for the Wi-Fi Box, unfortunately that’s where the issues started to creep up. Now luckily for me, I had two of these on hand, and I was able to sacrifice one in the name of experimental hacking. Now I personally am not skilled at this endeavour, however I did come across some instructions online which seem to be processing, so I decided to give it a shot. And I promptly bricked the device, and it hasn’t really worked since, so that didn’t go as planned. Turning my attention to the backup Wi-Fi Box I began the setup process.

The machine doesn’t come with the power adapter, so you’ll need to use one that’s 5Volts to 2Amps, which most phone adapter’s use. You won’t be able to connect to the device without installing the app, which is a little disappointing since it means that people like me can’t really use if for client work because of security issues. Also, this won’t work with anything but your cell phone, which means you’ll be forced to use the built-in slicer program to get it to work correctly. Once again, we’re going to be a little limited on our use case for this. So once you plug in the Wi-Fi box with an internet cable, the lights should look like this when they are fully functional.

When you first open the app, you’ll be greeted by a welcome screen which has a browse only mode and a term agreement mode. By selecting the browse only mode you’ll only be able to look at the content and won’ t be able to access any of the services which are provided by the cloud which includes the slicing of 3d models. So if you want to use the device, you’re going to need to agree to the terms of service. There are four tabs at the top of the screen which allow you to change between content. The follow tab is where you’ll go to follow your favourite designers and get up to day info about their designs. The “For You” tab is recommendations that will be made to you by Creality Cloud. Groups is where you can join groups that has content you want to stay up to date with. The last tab is the models one, where you can search for models to print.

To be able to slice the downloaded files, you first need to create a creality account. You will be prompted to create the account the moment you attempt a download. There are two options for this, one is you can use your phone number and the other is through e-mail. I choose to use my phone instead, at which point I received a confirmation number to complete the setup. In order to add a printer, you’ll first need to sink up the Wi-Fi box. To do so, you’re going to go to the bottom right corner of the screen to the “Me” button. From here, you’ll select “Add Device” and choose “Scan or Code” since this will be the easiest solution. If you haven’t already, you will be prompted to give access to your devices' camera. From here you can easily scan the QR code which will allow you to select from two options. Depending on how your printer is to be connected to the Wi-Fi Box, you’ll choose the option accordingly. They do a good job of informing the user of what they need to do in order to make sure that the connection is made to the device. At this point, you will be given the password for the Wi-Fi Box, which is a default of 12345678. This is where you’ll be redirected to your network and internet options, where you can enter the password to connect with the device. After entering the password I could clearly see that I was properly connected to the Wi-Fi box but the box itself wasn’t recognizing the Internet connection. From this point, I tried pretty much everything I could think of. I rebooted the Wi-Fi Box, followed by my network router, and tried resetting them to the factory defaults. I then proceeded to troubleshoot my hardware by replacing both the network switch and the cables to ensure that it wasn’t a faulty connection. My unit no matter what I tried just wouldn’t connect to the internet, which means it's pretty much useless. Once you have your device linked up, it seems like you can add multiple printers to that device, however I was not able to test this feature because the device wasn’t working correctly. This brings up a glaring issue with the device. The Wi-Fi box is pretty much useless if it’s not connected to the Creality Cloud.

So was this product even what people were looking for? I’d argue that probably not, although I could easily see how someone who was looking from the outside of the community might think so. If this product was intended to rival Octoprint, it needed to provide a very similar and secure service that was stable. Now to be clear Octoprint does have its own issues however there are ways in which you can actually use it offline. Octoprint also allows the user to slice their models with their own software, rather than relying on someone else's settings to do the job correctly. This product requires Creality Cloud access and transfer the data to the device via Wi-Fi, which inherently make the data more unstable when compared to a wired connection. We’re also limited to a maximum of 2 devices. A great innovation would have been to allow the user to be able to connect at least 3 to 4 printers and control these remotely. This however is not the case either.

Frankly, I’m very disappointed with creality since this is the first product I’ve used from them which didn’t work out of the box. And my final verdict is a 0/10. It couldn’t do its basic function and as such it failed to deliver on its promise to its user base. Having a working camera means nothing if the user didn’t intend to use the camera on its own. If you’ve spent money on this device, I feel very sorry for you and I really hope they send you a working device or refund what you paid for it. As I said before I will be posting a link for the product in the description below, but unless you’re a talented hacker this might not be the best solution at the moment. If Creality is able to release a product which functions offline and is resilient enough to compete with octoprint then I will re-visit this specific review in the future. As I said before, I intend to do a breakdown of what they could do to improve the user experience if they choose to release a new version in the future.

Link to the product: https://bit.ly/34cjAR6

How Good is the CR10 V3


In this video I take the CR10 V3 and put it through its paces to find out just how good this machine is.  I talk about the build quality, some suggested improvements and the overall design and functionality of the machine.  I also tested this machine with a some flexible filaments to see just how this machine might perform and show the final results. 

This video is a follow-up video to the original unboxing of the machine, and you can view that video at the following link. Unboxing the CR10 V3

Transcript

  Hello everybody and welcome to another video. In today’s video I will taking a look at the New CR10 V3 printer which came out recently. This is the follow up video from the initial unboxing experience so if you’re curious about what it’s like to put the machine together, make sure to check out that video in the description bellow. Now full disclaimer before we begin. I purchased this machine with my own money and was not paid to do this video so everything you see here will be based on my own opinion.

  To start things off this machine is a large printer which prints a dimension of 300x300x400mm and can reach hotbed temperatures of up to 100°C with a printer nozzle temperature of up to 250°C. Unlike many 3D printers this machine uses a direct extruder which pushes the filament directly into the nozzle instead of the traditional bowden tube. This feature makes is quite suitable for printing flexible filaments which is what was tested for this machine. Also included with the machine, is a run out filament censor which is located a the top of the machine along the spool holder.

  If you getting this machine yourself, you’ll want to keep the spool holder height in mind since it does take up more room because of it’s current location. This is however useful if you’re more limited in your overall space since you can easily place this on a table which doesn’t have any fixtures above it. I personally did end up liking the fact that the control box was separate since this allowed me more options in placing the machine. I for instance placed the 3d printer sideways but oriented the box controls towards the front of the table so I would have easier access. Having the control box separate also makes repairs a good deal easier since you can completely disconnect the machine in order to do the proper maintenance without having to deal with the whole unite.

  The hotbed itself has a very unique design in that it’s easily removable which makes replacements easier in the future and I do which more companies designed their print beds in a similar manner for this reason. This design also makes is possible to upgrade the print bed in the future with a flex plate which is great news for those who enjoy tinkering with their machines. The print bed is also pre-insulated to help retain the heating temperatures and is a welcome improvement to what can be typically seen in most printers today. I did see some reports about the V2 model having issues maintaining it’s heat however this isn’t something in which I found to be an issue with the model that I currently have.

  While having a touchscreen is more visually appealing and less daunting to those who are new to 3D printing it is still fairly easy to navigate. The machine does come with some basic instructions which do help significantly in this area. There are some things you may wish to know since they can often be taken for granted. For instance, if you the filament sensor goes off because there’s no more filament available and goes into standby. In this case the nozzle will cool down which is a good thing for safety reasons however it will mean that you need to reheat the nozzle prior to changing the filament. This is something you can easily do by going to “Prepare + Preheat PLA + Pre Heat nozzle” This will only pre-heat the nozzle at which point you can remove the filament in question. Be very careful not to jostle the nozzle otherwise your print will shift and this could cause the layers to be more brittle when they come apart.

  Now although the direct extruder is great for working with flexible filaments you definitely want to be aware that it can be difficult to maintain. The way it’s assembled, the wires do get pinched very tightly onto the side of the housing which does keep them out of the way however it can make reassembly interesting to deal with. Nozzle replacement shouldn’t be too affected however just keep in mind that you’ll want to raise up the print head before you do so. Creality has a very good tutorial on their YouTube channel which walks you through the steps and I recommend that you look at that video for more details. Most blockages can be removed with the aid of the provided tweezers so keep those nearby should you need them. For more severe blockages, you will most likely need to use the included needle to help push the blockage up and out but in most cases it can be removed by doing a cold pull. From a complete cool down state, start heating the nozzle up to temperature while pulling on the filament. This causes any deposits to be lifted up with the filament since they become just hot enough to stick to the filament being pulled out. This may have to be repeated 2 or 3 times but does a more thorough cleaning of the nozzle. One thing to keep in mind is that the extruder does have a bowden tube placed inside of the heat sink so on occasion this may need to be replaced however this should be a rare occasion.

  The nozzle does ship with a 0.4 nozzle along with it’s replacement however I would suggest that you replace these with a 0.6 or 0.8 since this will reduce your print times significantly for larger prints. If you require more detailed pieces and are willing to wait significantly longer than it may still be worthwhile. When it comes time to removing the filament, You’ll want to push this portion forwards until the filament comes out. Make sure the nozzle is heated before you do this otherwise this will be far more difficult to achieve and could result in the filament snapping within.

  The filament run out detector currently only accepts 1.75 filament which isn’t unsurprising since the filament trajectory could be problematic when the print head comes too close to it’s maximum height. I’ve had some issues with the filament snapping since it doesn’t have a bowden tube to help guide it’s trajectory. Fortunately this was mostly an issue with the cheaper filaments which were more brittle however part of this could of been caused by the extremely tight filament sensor. This filament sensor produces a lot of friction which may be the source of this issue and I would like to see this address in the future. When the filaments snaps, it doesn’t trigger the run out sensor because of it’s current location. This was far less pronounced when printing with TPU but was aggravated when using soft PLA. Having the sensor away from the print head is still very much appreciated since it make filament removal easier however I would like to see the angle of the spool revised along with the run out sensor. Having a gradual entryway to the filament sensor would get ride of the hard edges which seem to be causing the friction and should be a minor fix in the future.

  The frame is very well supported and given it’s size I’ve experienced very little Z-Wobble which is very much appreciated. For the wiring, some areas have been glued to help ensure that their connection points don’t come lose over time which is a good call since I’ve definitely experienced this issue with other machines in the past. The only thing to keep in mind is that this will make it more difficult to replace such wires in the future because of how they are currently attached however if they last much longer then this shouldn’t be an issue. All the cables are clearly labeled so tracing connections are a lot easier and will make future modifications easier to achieve. Along with the sturdy frame, the machine has silent stepper drivers and a built in mosfet. Although I personally prefer when the mosfet is separated from the board because it’s easier to replace, I can appreciated the fact that there’s one less item to troubleshoot in the future.

  So how did this machine perform? Well let’s start with the default Test print that comes which the machine. These prints are always a good way to make sure that you’re machine is functioning correctly and should always be the first thing that’s printed. So in my case I choose the dog and although it’s difficult to see just how well it printed because of the filament color that came with the machine it did very good. I then tried printing with flexible PLA which I soon discovered had a tendency to get stuck because it shaved so easily within the gear system. The results however were very comparable to the dog print. With that out of the way, I immediately changed to a 0.8 nozzle to see just how well it could print with a wide variety of materials. Once again I printed with the flexible PLA as well as some regular PLA and TPU filament. Here were results of the standard Benchie Test. I then followed up this print with a large scale print for my client in TPU which for NDA reason I can’t show on video. I can say that the 4 day print was very comparable in quality to my small Benchie Test print in TPU. I also 3d Printed a bust of one my sculptures. To test the full build volume, I then printed a vase in vase mode.

  This machine is really good. Especially if you already know that you want to use it for flexible filaments. While the user interface is perhaps not as modern, it does the job quite fine and with a couple of tweaks this could be an even greater machine. So would I recommend this machine? It’s a good machine if you already have some basic experience. I probably wouldn’t recommend it as your first printer because of the user interface and most user’s don’t require such a large build volume starting off. This is a very good upgrade to your current repository and is an affordable next step.