FREE SHIPPING FOR ORDERS OVER $100 IN CANADA or $125 IN THE US.

CR10 V3 Fix – Filament Sensor Mod



In this video it take the existing filament sensor which has a habit of catching and replace it with a modified version which works a lot better.  I go through the installation and design process of how this modification was made.

Files for Download

Transcript

Hello everybody and welcome to the 3D printer Modding series. In today’s video we’ll take the notorious filament runout sensor that comes with the CR10 V3 and modify it to be more fluid in how it lets filament pass through it. I also have a follow up video which addresses a proper cable guide for the hot end so keep an eye our for that video in the future. As always, please do this mods at your own risk and I’m in no way responsible for any damages that may occur.

  So as i mentioned in my previous review of the Creality CR10 V3, the sensor was very much holding back the potential for this machine. Because of the initial design for the filament intake, it caused a severe amount of friction to occur which in some instances prevented the proper flow of filament through the nozzle. Before trying to create a new housing i did run a test to see if I could simply replace the existing sensor with one that I had lying around however this produced an error which prevented the printing process from starting. Instead of modifying the firmware, I decided to change the housing which I believed to be the main cause of the issue. The electronics themselves were very well designed so doing this also make this modification easier for other’s to undertake.

  So the very first step was to the remove the existing component and open it up to see what was inside. Luckily, this was fairly easy to accomplish because of how it was assembled on the machine. Once you remove the 4 screws holding it in place you are immediately greeted with the electronic components. To make my life easier, I did decide to remove the filament stand, however this is not a necessary step.

  Once the electronics were visible I removed the two screws holding them in place so that I could get a better look at the housing that already existed on the machine. The first step was the remodel the area where the sensor would be sitting and once that portion as completed I was then able to focus on the entryway for the filament. The issue with the stock version is that the angles were too sharp and this was what was causing the large amount of friction. Also the alignment was slightly off and this caused the filament to get stuck in the switch portion of the mechanism. In order to address these issues, I created a gradual entry way for the filament the pass through and changed the point where the filament intersected with the switch. This produced a much more gradual entrance which reduced the friction significantly.

  With this out of the way it was now time to create the connection points in which the two halves of the sensor would meet and combine to make the shell. I then added the bolt indents to further make this easier to assemble. So after a couple of prototypes I finally had the final version that I would be installing on my machine.

  IF you decide to install this one your own machine you’ll need to do the following. You’ll need to add the two screws to hold the switch in place after which you’ll add the screws and bolts for the housing. In my case I only had longer screws available so I ended up only installing two of these across from each other. This also allowed me to place a much longer screw going in the opposite direction to attach this to the sensor mount. I added a bolt behind it just to make sure that it didn’t come off latter on. With that completed I installed it onto the machine and quickly tested it with both flexible and PLA filament. After doing my first print I can say that it’s still working quite well and I’m happy with the results. This was the resulting test cube which was printed with a 0.8 nozzle and scaled to 130%.

  Although this may seem like a simple mod I found this to be one in which I appreciate the most since the friction being produced has caused my filament to break in mid print on certain occasions. Since the filament sensor is mounted away from the nozzle it doesn’t register a break in the filament and keeps on printing which has been a issue in the past. With modification in place it should prevent this from reoccurring in the future.

How Good is the CR10 V3



In this video I take the CR10 V3 and put it through it's paces to find out just how good this machine is.  I talk about the build quality, some suggested improvements and the overall design and functionality of the machine.  I also tested this machine with a some flexible filaments to see just how this machine might perform and show the final results. 

This video is a follow up video to the original unboxing of the machine and you can view that video at the following link. Unboxing the CR10 V3

Transcript

  Hello everybody and welcome to another video. In today’s video I will taking a look at the New CR10 V3 printer which came out recently. This is the follow up video from the initial unboxing experience so if you’re curious about what it’s like to put the machine together, make sure to check out that video in the description bellow. Now full disclaimer before we begin. I purchased this machine with my own money and was not paid to do this video so everything you see here will be based on my own opinion.

  To start things off this machine is a large printer which prints a dimension of 300x300x400mm and can reach hotbed temperatures of up to 100°C with a printer nozzle temperature of up to 250°C. Unlike many 3D printers this machine uses a direct extruder which pushes the filament directly into the nozzle instead of the traditional bowden tube. This feature makes is quite suitable for printing flexible filaments which is what was tested for this machine. Also included with the machine, is a run out filament censor which is located a the top of the machine along the spool holder.

  If you getting this machine yourself, you’ll want to keep the spool holder height in mind since it does take up more room because of it’s current location. This is however useful if you’re more limited in your overall space since you can easily place this on a table which doesn’t have any fixtures above it. I personally did end up liking the fact that the control box was separate since this allowed me more options in placing the machine. I for instance placed the 3d printer sideways but oriented the box controls towards the front of the table so I would have easier access. Having the control box separate also makes repairs a good deal easier since you can completely disconnect the machine in order to do the proper maintenance without having to deal with the whole unite.

  The hotbed itself has a very unique design in that it’s easily removable which makes replacements easier in the future and I do which more companies designed their print beds in a similar manner for this reason. This design also makes is possible to upgrade the print bed in the future with a flex plate which is great news for those who enjoy tinkering with their machines. The print bed is also pre-insulated to help retain the heating temperatures and is a welcome improvement to what can be typically seen in most printers today. I did see some reports about the V2 model having issues maintaining it’s heat however this isn’t something in which I found to be an issue with the model that I currently have.

  While having a touchscreen is more visually appealing and less daunting to those who are new to 3D printing it is still fairly easy to navigate. The machine does come with some basic instructions which do help significantly in this area. There are some things you may wish to know since they can often be taken for granted. For instance, if you the filament sensor goes off because there’s no more filament available and goes into standby. In this case the nozzle will cool down which is a good thing for safety reasons however it will mean that you need to reheat the nozzle prior to changing the filament. This is something you can easily do by going to “Prepare + Preheat PLA + Pre Heat nozzle” This will only pre-heat the nozzle at which point you can remove the filament in question. Be very careful not to jostle the nozzle otherwise your print will shift and this could cause the layers to be more brittle when they come apart.

  Now although the direct extruder is great for working with flexible filaments you definitely want to be aware that it can be difficult to maintain. The way it’s assembled, the wires do get pinched very tightly onto the side of the housing which does keep them out of the way however it can make reassembly interesting to deal with. Nozzle replacement shouldn’t be too affected however just keep in mind that you’ll want to raise up the print head before you do so. Creality has a very good tutorial on their YouTube channel which walks you through the steps and I recommend that you look at that video for more details. Most blockages can be removed with the aid of the provided tweezers so keep those nearby should you need them. For more severe blockages, you will most likely need to use the included needle to help push the blockage up and out but in most cases it can be removed by doing a cold pull. From a complete cool down state, start heating the nozzle up to temperature while pulling on the filament. This causes any deposits to be lifted up with the filament since they become just hot enough to stick to the filament being pulled out. This may have to be repeated 2 or 3 times but does a more thorough cleaning of the nozzle. One thing to keep in mind is that the extruder does have a bowden tube placed inside of the heat sink so on occasion this may need to be replaced however this should be a rare occasion.

  The nozzle does ship with a 0.4 nozzle along with it’s replacement however I would suggest that you replace these with a 0.6 or 0.8 since this will reduce your print times significantly for larger prints. If you require more detailed pieces and are willing to wait significantly longer than it may still be worthwhile. When it comes time to removing the filament, You’ll want to push this portion forwards until the filament comes out. Make sure the nozzle is heated before you do this otherwise this will be far more difficult to achieve and could result in the filament snapping within.

  The filament run out detector currently only accepts 1.75 filament which isn’t unsurprising since the filament trajectory could be problematic when the print head comes too close to it’s maximum height. I’ve had some issues with the filament snapping since it doesn’t have a bowden tube to help guide it’s trajectory. Fortunately this was mostly an issue with the cheaper filaments which were more brittle however part of this could of been caused by the extremely tight filament sensor. This filament sensor produces a lot of friction which may be the source of this issue and I would like to see this address in the future. When the filaments snaps, it doesn’t trigger the run out sensor because of it’s current location. This was far less pronounced when printing with TPU but was aggravated when using soft PLA. Having the sensor away from the print head is still very much appreciated since it make filament removal easier however I would like to see the angle of the spool revised along with the run out sensor. Having a gradual entryway to the filament sensor would get ride of the hard edges which seem to be causing the friction and should be a minor fix in the future.

  The frame is very well supported and given it’s size I’ve experienced very little Z-Wobble which is very much appreciated. For the wiring, some areas have been glued to help ensure that their connection points don’t come lose over time which is a good call since I’ve definitely experienced this issue with other machines in the past. The only thing to keep in mind is that this will make it more difficult to replace such wires in the future because of how they are currently attached however if they last much longer then this shouldn’t be an issue. All the cables are clearly labeled so tracing connections are a lot easier and will make future modifications easier to achieve. Along with the sturdy frame, the machine has silent stepper drivers and a built in mosfet. Although I personally prefer when the mosfet is separated from the board because it’s easier to replace, I can appreciated the fact that there’s one less item to troubleshoot in the future.

  So how did this machine perform? Well let’s start with the default Test print that comes which the machine. These prints are always a good way to make sure that you’re machine is functioning correctly and should always be the first thing that’s printed. So in my case I choose the dog and although it’s difficult to see just how well it printed because of the filament color that came with the machine it did very good. I then tried printing with flexible PLA which I soon discovered had a tendency to get stuck because it shaved so easily within the gear system. The results however were very comparable to the dog print. With that out of the way, I immediately changed to a 0.8 nozzle to see just how well it could print with a wide variety of materials. Once again I printed with the flexible PLA as well as some regular PLA and TPU filament. Here were results of the standard Benchie Test. I then followed up this print with a large scale print for my client in TPU which for NDA reason I can’t show on video. I can say that the 4 day print was very comparable in quality to my small Benchie Test print in TPU. I also 3d Printed a bust of one my sculptures. To test the full build volume, I then printed a vase in vase mode.

  This machine is really good. Especially if you already know that you want to use it for flexible filaments. While the user interface is perhaps not as modern, it does the job quite fine and with a couple of tweaks this could be an even greater machine. So would I recommend this machine? It’s a good machine if you already have some basic experience. I probably wouldn’t recommend it as your first printer because of the user interface and most user’s don’t require such a large build volume starting off. This is a very good upgrade to your current repository and is an affordable next step.

CR10-V3 Unboxing Impressions



In this video I will be unboxing the CR10-V3 3D printer by Creality to see just how easy it was get up and running.  I will also give some tips and tricks on the assembly to make it easier for other's to do as well.  I purchased this video for my production process since it's a direct extruder design and is more suitable for flexible filaments.  The build format is also quite a bit larger than my existing machines which is why I found this to be a suitable addition to my prototyping studio.  I will be doing a full review of the machine in the future so please keep an eye for this.

Transcript

 Hello everybody and welcome to another video. In today’s video I will be taking a first look at a new 3D printer which I haven’t as of yet heard much about. I am planning on making a follow up which will be the full review however today I’ll go over the assembly and first impressions that I have with the machine. I bought this machine online soon after it was available and have been taking a closer look at it’s capabilities. This video was in no way sponsored, I purchased this machine in order to fit the requirements for some of my client work and decided on this model.

  The packaging was extremely well done which was a relief given the shipping company which was used to deliver my printer. One thing that is important to note is that the support bars are hidden in a compartment in the foam so you’ll want to make sure to find those pieces otherwise you won’t benefit from the rigid frame design. If you pick up the foam pieces you’ll notice that one is heavier than the other’s and this is where the compartment is located.

  Once opened, you should have all the materials that you need to assemble this machine however at the time of this recording the BLT touch was back-order therefore I will be including this in the follow up video instead. The user manual is very well designed with a parts breakdown list and diagram in color which is always a good sign. The company has also been very good in providing instructional tutorial within their website in order to help with problem solving.

  Before you begin assembly always take all of the components and place them out so that you can make sure you have all of the required parts. This is simple but important step before you begin working on putting any machine together. Lay the frame on top after you’ve turned the couplings upwards to give yourself some more room. When attaching the main bolts for the frame, I would recommend moving the machine to the side of the table so that you can see underneath without damaging any of the components. I loosely tighten these screws until I have them all placed at which point I tighten them fully. If you over tighten then you could risk bending or stripping the threads so they should be tight enough that they won’t come lose but not so tight that you see your tool bending with the force.

  For the pull rod, you’ll first need to join two of the poles together using the provided double ended screw. You’ll want to partially turn in one portion of the component. For the second bar you’ll want to hold it with you thumb to prevent it from spinning while you attach the second pole. You’ll then attach the live bolt to either ends of the joined pole. Make sure to add the bolt onto the live bolt since this will help lock the bar into place. In my initial assembly I overlooked this portion and had to fix this latter on. Make sure to use the Wrench to tighten the bolt afterwards. Take one of the screws and place this through the live bolt hole while placing the washer on the other opposing side. Screw this first into the bottom hole. In my case this hole was covered with plastic caps to help protect them so you’ll need to remove these before completing the assembly.

  Next I pre-threaded the L connector for the top of the frame making sure to keep these a lose as possible. These turn around in the grove to lock themselves into place if put in correctly. Double check to make sure that they’re turned the right way after you’ve put these into place. I then attached the Live bolt into the frame in the same manner as the bottom of the rod.

  Z end stop goes on the side where the two screw holes are and with the switch facing upwards. The company also provide a replacement switch in case it’s needed in the future so make sure that you store this in a safe location.

  I made sure to change the correct input voltage to my areas requirements which for me is 115.

  The next part was to attach the filament run out detector. This portion has an arrow so that you know the proper orientation for this part. I mounted it with the arrow facing to the front so that the light is visible when turned on. As the for the filament spool, I mounted it differently from what was shown in the diagram. From personal experience I’ve had some spool which could get caught on edges so choose the smoother side as the contact area. The filament run out sensor seems to have quite a bit of friction and may cause issues during printing. I made sure to mount it as close as possible while still having enough room for a full sized spool of filament. If this is your first printer and you don’t have a full spool keep in mind you will need to adjust this latter since the provided one is extremely small in comparison.

  With the basic assembly completed, I then connected the power cable and build plate connector to the power box. Following the labeling of the cables, I connected the two Z axis connector and the Z stop sensor. Afterwards I proceed to connect the Y axis motor, XE Transfer Interface, YZ Transfer Interface, filament run out sensor, Extruder Motor and the cable guide by following the instructions and labels provided. When I received my shipment the cable guide was attached to the frame however this came off during the unboxing so make sure to check carefully to ensure that it’s installed before finishing. Also it’s very important to give the cable enough slack in order to move completely to the back to prevent any undo strain. This guide is important in preventing the premature wear of the cables which is a common issue with printers.

  With the machine put together I it was now time to print the model that was provided with the printer. It’s always a good idea to print the test model before doing anything else since this can help diagnose issues more quickly. In my case the print came out almost flawless however because of the choice of filament it was difficult to see the imperfections along the surface. Once this print was completed, I then swapped out the nozzle to check how it printed with a larger nozzle size. I must point out that changing the nozzle is somewhat awkward if you don’t know how to do it properly. This is something which I will discuss in the full review of the machine afterwards. With the nozzle changed out, I then began tweaking my settings until I had something which worked fairly well. I’ll be doing quite a bit more tweaks before I finish this piece off but for now this is how the print came out.