This machine has long been problematic so when this came up I used it as an opportunity to show you guys how to change the thermistor of my hot bed.
Transcript
Hello everybody and welcome to another repair video. In today’s video I’ll be showing you how I was able to replace the thermistor on my 3D printer and finally fix the ongoing issues with my printer. Now a quick disclaimer that this video wasn’t sponsored by Anycubic and to do this modification at your own risk.
So before anyone asks, I’ve been having issues with this machine for a very long time. Unlike my first I3 Mega, this one has been prone to stopping randomly, and although I’ve replaced quite a few components and updated the firmware the issues have persisted. While most of the issues were from prints failing to complete on this occasion things were quite different. The print bed temperatures were fluctuating quite dramatically which was preventing the print from starting. I had replaced the motherboard in the past, updated the firmware, replaced the SD card reader and re-checked the wiring, so I was fairly certain that these weren’t the issues. So I unscrewed the build plate and began double-checking the resistance with a multimeter.
The very first thing I noticed was that the thermistor was completely black which could be normal however I still decided to double-check. So the resistance rating for most of these thermistors is normally 100k, but I was reading some strange numbers. Also, you’ll want to make sure that the print bed is fully cooled down prior to trying to take your measurements since this seems to affect the readouts. I also noticed that the readings weren’t the same once re-soldered together so that’ll be something you want to keep in mind.
While soldering, I noticed that the old solder wasn’t coming off easily even when adding flux. I suspected that the heat bed was helping to defuse the heat, so I preheated the surface, but that wasn’t enough. I ended up adding some fresh solder to the connections along with flux which then allowed me to use solder wick to remove the material from the connection points. Once I removed the old thermistor I noticed that there was a small hole where the thermistor was located. With the black coating it’s difficult to see so here’s a small diagram to show you what it looked like.
I did need to shape the wires slightly to make sure that they would align correctly however everything soldered together nicely. After testing it the resistance seemed better than before, but I wasn’t entirely sure that it had worked since i wasn’t getting the same results as when I tested the thermistor prior to soldering it into place. I decided to put the machine back together and do a final test.
When everything was put back together I began running the test print. I had outfitted this machine with a 0.8 nozzle since it was originally used for printing large functional parts. The first print didn’t look good in the beginning however the temperatures quickly stabilized and stopped fluctuating irregularly after the first print. All following prints had stable temperatures. This also got me thinking about what might be the issue with this machine. When I began hitting the reset bottom for the machine all issues stopped when starting a new print. So I began to experiment with the G-code a bit and after trying out the G999 command and a couple of others I decided to compare it with another machines settings. This is where it discovered that there was some extra lines of code and decided to copy and past the end G-code from my CR10-V3 to see if this made a difference. Sure enough, after over a year of being problematic the problem finally seems to be fixed. Or was it? Unfortunately once I started a larger print, I began running into the same issues as before although at least my print bed temperatures were correct this time. I will be posting the G-code in the description below just in case it does end up working for you.
Having seen a lot of issues with the wiring hubs of this machine I will begin trying to rewire it in an effort to get the machine working properly. Make sure to keep an eye out for the follow-up video when I undergo this process since I will be including a price breakdown as well.
So was this repair worth it? I’d say yes considering that the thermistors are fairly inexpensive now days especially the one’s which are compatible with the Anycubic printer. In case some of you were wondering, I bought the NTC 3950 100k version at the time from Amazon however if you’re worried about compatibility issues and don’t want to risk having to change your firmware settings you may which to order it from the main Anycubic website. After over a year of having a problematic machine, I finally seem to have one that works on par with my expectations.
In this video it take the existing filament sensor which has a habit of catching and replace it with a modified version which works a lot better. I go through the installation and design process of how this modification was made.
Transcript
Hello everybody and welcome to the 3D printer Modding series. In today’s video we’ll take the notorious filament runout sensor that comes with the CR10 V3 and modify it to be more fluid in how it lets filament pass through it. I also have a follow up video which addresses a proper cable guide for the hot end so keep an eye our for that video in the future. As always, please do this mods at your own risk and I’m in no way responsible for any damages that may occur.
So as i mentioned in my previous review of the Creality CR10 V3, the sensor was very much holding back the potential for this machine. Because of the initial design for the filament intake, it caused a severe amount of friction to occur which in some instances prevented the proper flow of filament through the nozzle. Before trying to create a new housing i did run a test to see if I could simply replace the existing sensor with one that I had lying around however this produced an error which prevented the printing process from starting. Instead of modifying the firmware, I decided to change the housing which I believed to be the main cause of the issue. The electronics themselves were very well designed so doing this also make this modification easier for other’s to undertake.
So the very first step was to the remove the existing component and open it up to see what was inside. Luckily, this was fairly easy to accomplish because of how it was assembled on the machine. Once you remove the 4 screws holding it in place you are immediately greeted with the electronic components. To make my life easier, I did decide to remove the filament stand, however this is not a necessary step.
Once the electronics were visible I removed the two screws holding them in place so that I could get a better look at the housing that already existed on the machine. The first step was the remodel the area where the sensor would be sitting and once that portion as completed I was then able to focus on the entryway for the filament. The issue with the stock version is that the angles were too sharp and this was what was causing the large amount of friction. Also the alignment was slightly off and this caused the filament to get stuck in the switch portion of the mechanism. In order to address these issues, I created a gradual entry way for the filament the pass through and changed the point where the filament intersected with the switch. This produced a much more gradual entrance which reduced the friction significantly.
With this out of the way it was now time to create the connection points in which the two halves of the sensor would meet and combine to make the shell. I then added the bolt indents to further make this easier to assemble. So after a couple of prototypes I finally had the final version that I would be installing on my machine.
IF you decide to install this one your own machine you’ll need to do the following. You’ll need to add the two screws to hold the switch in place after which you’ll add the screws and bolts for the housing. In my case I only had longer screws available so I ended up only installing two of these across from each other. This also allowed me to place a much longer screw going in the opposite direction to attach this to the sensor mount. I added a bolt behind it just to make sure that it didn’t come off latter on. With that completed I installed it onto the machine and quickly tested it with both flexible and PLA filament. After doing my first print I can say that it’s still working quite well and I’m happy with the results. This was the resulting test cube which was printed with a 0.8 nozzle and scaled to 130%.
Although this may seem like a simple mod I found this to be one in which I appreciate the most since the friction being produced has caused my filament to break in mid print on certain occasions. Since the filament sensor is mounted away from the nozzle it doesn’t register a break in the filament and keeps on printing which has been a issue in the past. With modification in place it should prevent this from reoccurring in the future.
In this video I will be unboxing the CR10-V3 3D printer by Creality to see just how easy it was get up and running. I will also give some tips and tricks on the assembly to make it easier for other's to do as well. I purchased this video for my production process since it's a direct extruder design and is more suitable for flexible filaments. The build format is also quite a bit larger than my existing machines which is why I found this to be a suitable addition to my prototyping studio. I will be doing a full review of the machine in the future so please keep an eye for this.
Transcript
Hello everybody and welcome to another video. In today’s video I will be taking a first look at a new 3D printer which I haven’t as of yet heard much about. I am planning on making a follow up which will be the full review however today I’ll go over the assembly and first impressions that I have with the machine. I bought this machine online soon after it was available and have been taking a closer look at it’s capabilities. This video was in no way sponsored, I purchased this machine in order to fit the requirements for some of my client work and decided on this model.
The packaging was extremely well done which was a relief given the shipping company which was used to deliver my printer. One thing that is important to note is that the support bars are hidden in a compartment in the foam so you’ll want to make sure to find those pieces otherwise you won’t benefit from the rigid frame design. If you pick up the foam pieces you’ll notice that one is heavier than the other’s and this is where the compartment is located.
Once opened, you should have all the materials that you need to assemble this machine however at the time of this recording the BLT touch was back-order therefore I will be including this in the follow up video instead. The user manual is very well designed with a parts breakdown list and diagram in color which is always a good sign. The company has also been very good in providing instructional tutorial within their website in order to help with problem solving.
Before you begin assembly always take all of the components and place them out so that you can make sure you have all of the required parts. This is simple but important step before you begin working on putting any machine together. Lay the frame on top after you’ve turned the couplings upwards to give yourself some more room. When attaching the main bolts for the frame, I would recommend moving the machine to the side of the table so that you can see underneath without damaging any of the components. I loosely tighten these screws until I have them all placed at which point I tighten them fully. If you over tighten then you could risk bending or stripping the threads so they should be tight enough that they won’t come lose but not so tight that you see your tool bending with the force.
For the pull rod, you’ll first need to join two of the poles together using the provided double ended screw. You’ll want to partially turn in one portion of the component. For the second bar you’ll want to hold it with you thumb to prevent it from spinning while you attach the second pole. You’ll then attach the live bolt to either ends of the joined pole. Make sure to add the bolt onto the live bolt since this will help lock the bar into place. In my initial assembly I overlooked this portion and had to fix this latter on. Make sure to use the Wrench to tighten the bolt afterwards. Take one of the screws and place this through the live bolt hole while placing the washer on the other opposing side. Screw this first into the bottom hole. In my case this hole was covered with plastic caps to help protect them so you’ll need to remove these before completing the assembly.
Next I pre-threaded the L connector for the top of the frame making sure to keep these a lose as possible. These turn around in the grove to lock themselves into place if put in correctly. Double check to make sure that they’re turned the right way after you’ve put these into place. I then attached the Live bolt into the frame in the same manner as the bottom of the rod.
Z end stop goes on the side where the two screw holes are and with the switch facing upwards. The company also provide a replacement switch in case it’s needed in the future so make sure that you store this in a safe location.
I made sure to change the correct input voltage to my areas requirements which for me is 115.
The next part was to attach the filament run out detector. This portion has an arrow so that you know the proper orientation for this part. I mounted it with the arrow facing to the front so that the light is visible when turned on. As the for the filament spool, I mounted it differently from what was shown in the diagram. From personal experience I’ve had some spool which could get caught on edges so choose the smoother side as the contact area. The filament run out sensor seems to have quite a bit of friction and may cause issues during printing. I made sure to mount it as close as possible while still having enough room for a full sized spool of filament. If this is your first printer and you don’t have a full spool keep in mind you will need to adjust this latter since the provided one is extremely small in comparison.
With the basic assembly completed, I then connected the power cable and build plate connector to the power box. Following the labeling of the cables, I connected the two Z axis connector and the Z stop sensor. Afterwards I proceed to connect the Y axis motor, XE Transfer Interface, YZ Transfer Interface, filament run out sensor, Extruder Motor and the cable guide by following the instructions and labels provided. When I received my shipment the cable guide was attached to the frame however this came off during the unboxing so make sure to check carefully to ensure that it’s installed before finishing. Also it’s very important to give the cable enough slack in order to move completely to the back to prevent any undo strain. This guide is important in preventing the premature wear of the cables which is a common issue with printers.
With the machine put together I it was now time to print the model that was provided with the printer. It’s always a good idea to print the test model before doing anything else since this can help diagnose issues more quickly. In my case the print came out almost flawless however because of the choice of filament it was difficult to see the imperfections along the surface. Once this print was completed, I then swapped out the nozzle to check how it printed with a larger nozzle size. I must point out that changing the nozzle is somewhat awkward if you don’t know how to do it properly. This is something which I will discuss in the full review of the machine afterwards. With the nozzle changed out, I then began tweaking my settings until I had something which worked fairly well. I’ll be doing quite a bit more tweaks before I finish this piece off but for now this is how the print came out.