FREE SHIPPING FOR ORDERS OVER $100 IN CANADA or $125 IN THE US.

CR10 V3 Installing BLT Touch



Ever wonder just how difficult it was to add automatic bed leveling to your CR10 V3? In this video I cover the in’s an out’s of this process and give you a final verdict on who this upgrade might be for. Make sure to check out the main review for this machine at this link CR10 V3 Final Verdict

Hello everybody and welcome to another review. So in today’s video, we’ll go over the BLT touch installation for the CR10-V3 and whether or not this is worth getting. Before we begin, I’d like to make it clear that this review was in no way sponcered and that I had purchased the BLT with my own money at the same time as the CR10-V3 and this represents my own opinion on what I’ve experienced.

  In order to do this upgrade you’re going to need know a couple of things. Now in most cases when you first order your machine, it came with a usb stick which had everything that you needed to get started including the firmware upgrade that you’ll need. If you don’t have this however, that’s fine since it’s also readily available through the main website of Creality.com. The firmware comes pre-compiled which is nice however the zip file has some extra character’s which prevents the operating system from recognizing the files. So the first thing you’ll want to do is remove the extra character’s after the .zip. At this point you can then extract the files within the folder where you’ll be treated to the instructional PDF’s as well as the firmware.

  Before flashing the firmware you’ll need to connect your computer to the 3D printer and the required cable doesn’t come with the machine so you’ll need to obtain one prior to installation. Furthermore, you’ll want to make sure that your chosen slicer software is closed was well as any other flashing software such as Xloader, arduino or pronterface. In order to do this upgrade, you will need to use the included Creality Sliser since simply inserting an SD card with the firmware will not work or using Cura and Xloader. This software is also available through the main website. While you might be able to use a custom bootloader, this wasn’t something that was tested at the time since the upgrade worked with the included software.

  Once you have the Creality Slicer open, you’ll need to make the following changes. Go to File, Preferences and change the printer window type to “Pronterface UI” then select “Ok”. Then go to File, Machine Settings and change the Serial Port to “COM3” then the baudrate to 115200 at which point you can select “Ok”. Then go to Machine, install custom firmware and navigate to the blt touch firmware that you intend to install. In my case I renamed the file however you’s will most likely be called CR-10 V2TF1.1.6.0BLTouchV3.1. Give the machine a little time to finish the upload at which point your ready to do the rest of the installation process.

  To begin, we no longer require the Z axis Endstop so for this reason we’re going to remove this so that it doesn’t interfer. The next stage is the install the BLT touch itself. You’ll want to put the first two screws going upwards from the bottom of the sensor on the side which you see the 3 holes. Only the two holes will will have screws for them. Make sure to add the connector cable to the BLT since it will be difficult to access this once it’s installed fullly. After you can then install the remainder two screws to the appropriate location on the nossel housing. Remove the XE Transfer Interface Housing so that you have access to the female pin header and attach the connector to it. You can then reatach the housing to complete the assembly.

  The next stage is to setup the BLT touch leveling and first we will do a basic bed leveling to determine the low and high points on the machine. To do this, go to Prepare, Bed leveling and allow the machine to complete the probing. We now need to set up the Z offset which is currently set higher to ensure that the bed isn’t damaged. Go to Prepare, Move Axis, Move Z, Move 10mm where you’ll set this to 00.00. Then go to Move 1mm and lower this the first couple of increments but not to far otherwise you’ll hit the bed. You’ll then want to move it 0.1mm at a time to get it to the appropriate height. Make sure to write down this value since you’ll need this latter. You can use a piece of of paper to help ensure that you have the proper distance if that’s what you’re currently used to using. Go back up the menue hierarchy and go to Control, initialize EEPROM where once you enter this menue you’ll get a warning beep. Go to the Motion, Z Offset and set the number that you wrote down here. Go back one menue and choose Store Settings at which point the machine will beep another warning. Navigate out to the main menu where you can then start your first test print. I’m using a model which was created by Bnimon on Thingiverse Since they created a file for the different nozzle widths and I had changed mine to a 0.8. I will be including the link in the discription below if you would like to use this yourself.

  Make sure to keep the wire slack otherise the connector will get removed while printing. With all these steps completed it was now time to do a test print and these were the results. For any of you who’ve been doing 3D printing for a while now, you’ll have an appreaciation as to how long it can take to clean up a model such as this. In this case it took well over an hour just to remove the supports and I ended up getting large chucks half accross my room. So ya, I’d highly recommend some eye protection depending on the filament that you using and unless you have very calloused hands you may also want to use gloves. Over all however, the final model turned out pretty good considering it was printed with a 0.8 nozzle and 0.5 layer height.

  So was this mod worth the effort. In my case I would say that it was since I rarely swap out my nozzle however if you swap out your nozzle more often then this may not be faster then simply hand leveling the bed although it is more accurate. So like most cases, it will depend on your use case but I would suggest adding this if you have the oppertunity since it is quite useful.

How Good is the CR10 V3



In this video I take the CR10 V3 and put it through it's paces to find out just how good this machine is.  I talk about the build quality, some suggested improvements and the overall design and functionality of the machine.  I also tested this machine with a some flexible filaments to see just how this machine might perform and show the final results. 

This video is a follow up video to the original unboxing of the machine and you can view that video at the following link. Unboxing the CR10 V3

Transcript

  Hello everybody and welcome to another video. In today’s video I will taking a look at the New CR10 V3 printer which came out recently. This is the follow up video from the initial unboxing experience so if you’re curious about what it’s like to put the machine together, make sure to check out that video in the description bellow. Now full disclaimer before we begin. I purchased this machine with my own money and was not paid to do this video so everything you see here will be based on my own opinion.

  To start things off this machine is a large printer which prints a dimension of 300x300x400mm and can reach hotbed temperatures of up to 100°C with a printer nozzle temperature of up to 250°C. Unlike many 3D printers this machine uses a direct extruder which pushes the filament directly into the nozzle instead of the traditional bowden tube. This feature makes is quite suitable for printing flexible filaments which is what was tested for this machine. Also included with the machine, is a run out filament censor which is located a the top of the machine along the spool holder.

  If you getting this machine yourself, you’ll want to keep the spool holder height in mind since it does take up more room because of it’s current location. This is however useful if you’re more limited in your overall space since you can easily place this on a table which doesn’t have any fixtures above it. I personally did end up liking the fact that the control box was separate since this allowed me more options in placing the machine. I for instance placed the 3d printer sideways but oriented the box controls towards the front of the table so I would have easier access. Having the control box separate also makes repairs a good deal easier since you can completely disconnect the machine in order to do the proper maintenance without having to deal with the whole unite.

  The hotbed itself has a very unique design in that it’s easily removable which makes replacements easier in the future and I do which more companies designed their print beds in a similar manner for this reason. This design also makes is possible to upgrade the print bed in the future with a flex plate which is great news for those who enjoy tinkering with their machines. The print bed is also pre-insulated to help retain the heating temperatures and is a welcome improvement to what can be typically seen in most printers today. I did see some reports about the V2 model having issues maintaining it’s heat however this isn’t something in which I found to be an issue with the model that I currently have.

  While having a touchscreen is more visually appealing and less daunting to those who are new to 3D printing it is still fairly easy to navigate. The machine does come with some basic instructions which do help significantly in this area. There are some things you may wish to know since they can often be taken for granted. For instance, if you the filament sensor goes off because there’s no more filament available and goes into standby. In this case the nozzle will cool down which is a good thing for safety reasons however it will mean that you need to reheat the nozzle prior to changing the filament. This is something you can easily do by going to “Prepare + Preheat PLA + Pre Heat nozzle” This will only pre-heat the nozzle at which point you can remove the filament in question. Be very careful not to jostle the nozzle otherwise your print will shift and this could cause the layers to be more brittle when they come apart.

  Now although the direct extruder is great for working with flexible filaments you definitely want to be aware that it can be difficult to maintain. The way it’s assembled, the wires do get pinched very tightly onto the side of the housing which does keep them out of the way however it can make reassembly interesting to deal with. Nozzle replacement shouldn’t be too affected however just keep in mind that you’ll want to raise up the print head before you do so. Creality has a very good tutorial on their YouTube channel which walks you through the steps and I recommend that you look at that video for more details. Most blockages can be removed with the aid of the provided tweezers so keep those nearby should you need them. For more severe blockages, you will most likely need to use the included needle to help push the blockage up and out but in most cases it can be removed by doing a cold pull. From a complete cool down state, start heating the nozzle up to temperature while pulling on the filament. This causes any deposits to be lifted up with the filament since they become just hot enough to stick to the filament being pulled out. This may have to be repeated 2 or 3 times but does a more thorough cleaning of the nozzle. One thing to keep in mind is that the extruder does have a bowden tube placed inside of the heat sink so on occasion this may need to be replaced however this should be a rare occasion.

  The nozzle does ship with a 0.4 nozzle along with it’s replacement however I would suggest that you replace these with a 0.6 or 0.8 since this will reduce your print times significantly for larger prints. If you require more detailed pieces and are willing to wait significantly longer than it may still be worthwhile. When it comes time to removing the filament, You’ll want to push this portion forwards until the filament comes out. Make sure the nozzle is heated before you do this otherwise this will be far more difficult to achieve and could result in the filament snapping within.

  The filament run out detector currently only accepts 1.75 filament which isn’t unsurprising since the filament trajectory could be problematic when the print head comes too close to it’s maximum height. I’ve had some issues with the filament snapping since it doesn’t have a bowden tube to help guide it’s trajectory. Fortunately this was mostly an issue with the cheaper filaments which were more brittle however part of this could of been caused by the extremely tight filament sensor. This filament sensor produces a lot of friction which may be the source of this issue and I would like to see this address in the future. When the filaments snaps, it doesn’t trigger the run out sensor because of it’s current location. This was far less pronounced when printing with TPU but was aggravated when using soft PLA. Having the sensor away from the print head is still very much appreciated since it make filament removal easier however I would like to see the angle of the spool revised along with the run out sensor. Having a gradual entryway to the filament sensor would get ride of the hard edges which seem to be causing the friction and should be a minor fix in the future.

  The frame is very well supported and given it’s size I’ve experienced very little Z-Wobble which is very much appreciated. For the wiring, some areas have been glued to help ensure that their connection points don’t come lose over time which is a good call since I’ve definitely experienced this issue with other machines in the past. The only thing to keep in mind is that this will make it more difficult to replace such wires in the future because of how they are currently attached however if they last much longer then this shouldn’t be an issue. All the cables are clearly labeled so tracing connections are a lot easier and will make future modifications easier to achieve. Along with the sturdy frame, the machine has silent stepper drivers and a built in mosfet. Although I personally prefer when the mosfet is separated from the board because it’s easier to replace, I can appreciated the fact that there’s one less item to troubleshoot in the future.

  So how did this machine perform? Well let’s start with the default Test print that comes which the machine. These prints are always a good way to make sure that you’re machine is functioning correctly and should always be the first thing that’s printed. So in my case I choose the dog and although it’s difficult to see just how well it printed because of the filament color that came with the machine it did very good. I then tried printing with flexible PLA which I soon discovered had a tendency to get stuck because it shaved so easily within the gear system. The results however were very comparable to the dog print. With that out of the way, I immediately changed to a 0.8 nozzle to see just how well it could print with a wide variety of materials. Once again I printed with the flexible PLA as well as some regular PLA and TPU filament. Here were results of the standard Benchie Test. I then followed up this print with a large scale print for my client in TPU which for NDA reason I can’t show on video. I can say that the 4 day print was very comparable in quality to my small Benchie Test print in TPU. I also 3d Printed a bust of one my sculptures. To test the full build volume, I then printed a vase in vase mode.

  This machine is really good. Especially if you already know that you want to use it for flexible filaments. While the user interface is perhaps not as modern, it does the job quite fine and with a couple of tweaks this could be an even greater machine. So would I recommend this machine? It’s a good machine if you already have some basic experience. I probably wouldn’t recommend it as your first printer because of the user interface and most user’s don’t require such a large build volume starting off. This is a very good upgrade to your current repository and is an affordable next step.

CR10-V3 Unboxing Impressions



In this video I will be unboxing the CR10-V3 3D printer by Creality to see just how easy it was get up and running.  I will also give some tips and tricks on the assembly to make it easier for other's to do as well.  I purchased this video for my production process since it's a direct extruder design and is more suitable for flexible filaments.  The build format is also quite a bit larger than my existing machines which is why I found this to be a suitable addition to my prototyping studio.  I will be doing a full review of the machine in the future so please keep an eye for this.

Transcript

 Hello everybody and welcome to another video. In today’s video I will be taking a first look at a new 3D printer which I haven’t as of yet heard much about. I am planning on making a follow up which will be the full review however today I’ll go over the assembly and first impressions that I have with the machine. I bought this machine online soon after it was available and have been taking a closer look at it’s capabilities. This video was in no way sponsored, I purchased this machine in order to fit the requirements for some of my client work and decided on this model.

  The packaging was extremely well done which was a relief given the shipping company which was used to deliver my printer. One thing that is important to note is that the support bars are hidden in a compartment in the foam so you’ll want to make sure to find those pieces otherwise you won’t benefit from the rigid frame design. If you pick up the foam pieces you’ll notice that one is heavier than the other’s and this is where the compartment is located.

  Once opened, you should have all the materials that you need to assemble this machine however at the time of this recording the BLT touch was back-order therefore I will be including this in the follow up video instead. The user manual is very well designed with a parts breakdown list and diagram in color which is always a good sign. The company has also been very good in providing instructional tutorial within their website in order to help with problem solving.

  Before you begin assembly always take all of the components and place them out so that you can make sure you have all of the required parts. This is simple but important step before you begin working on putting any machine together. Lay the frame on top after you’ve turned the couplings upwards to give yourself some more room. When attaching the main bolts for the frame, I would recommend moving the machine to the side of the table so that you can see underneath without damaging any of the components. I loosely tighten these screws until I have them all placed at which point I tighten them fully. If you over tighten then you could risk bending or stripping the threads so they should be tight enough that they won’t come lose but not so tight that you see your tool bending with the force.

  For the pull rod, you’ll first need to join two of the poles together using the provided double ended screw. You’ll want to partially turn in one portion of the component. For the second bar you’ll want to hold it with you thumb to prevent it from spinning while you attach the second pole. You’ll then attach the live bolt to either ends of the joined pole. Make sure to add the bolt onto the live bolt since this will help lock the bar into place. In my initial assembly I overlooked this portion and had to fix this latter on. Make sure to use the Wrench to tighten the bolt afterwards. Take one of the screws and place this through the live bolt hole while placing the washer on the other opposing side. Screw this first into the bottom hole. In my case this hole was covered with plastic caps to help protect them so you’ll need to remove these before completing the assembly.

  Next I pre-threaded the L connector for the top of the frame making sure to keep these a lose as possible. These turn around in the grove to lock themselves into place if put in correctly. Double check to make sure that they’re turned the right way after you’ve put these into place. I then attached the Live bolt into the frame in the same manner as the bottom of the rod.

  Z end stop goes on the side where the two screw holes are and with the switch facing upwards. The company also provide a replacement switch in case it’s needed in the future so make sure that you store this in a safe location.

  I made sure to change the correct input voltage to my areas requirements which for me is 115.

  The next part was to attach the filament run out detector. This portion has an arrow so that you know the proper orientation for this part. I mounted it with the arrow facing to the front so that the light is visible when turned on. As the for the filament spool, I mounted it differently from what was shown in the diagram. From personal experience I’ve had some spool which could get caught on edges so choose the smoother side as the contact area. The filament run out sensor seems to have quite a bit of friction and may cause issues during printing. I made sure to mount it as close as possible while still having enough room for a full sized spool of filament. If this is your first printer and you don’t have a full spool keep in mind you will need to adjust this latter since the provided one is extremely small in comparison.

  With the basic assembly completed, I then connected the power cable and build plate connector to the power box. Following the labeling of the cables, I connected the two Z axis connector and the Z stop sensor. Afterwards I proceed to connect the Y axis motor, XE Transfer Interface, YZ Transfer Interface, filament run out sensor, Extruder Motor and the cable guide by following the instructions and labels provided. When I received my shipment the cable guide was attached to the frame however this came off during the unboxing so make sure to check carefully to ensure that it’s installed before finishing. Also it’s very important to give the cable enough slack in order to move completely to the back to prevent any undo strain. This guide is important in preventing the premature wear of the cables which is a common issue with printers.

  With the machine put together I it was now time to print the model that was provided with the printer. It’s always a good idea to print the test model before doing anything else since this can help diagnose issues more quickly. In my case the print came out almost flawless however because of the choice of filament it was difficult to see the imperfections along the surface. Once this print was completed, I then swapped out the nozzle to check how it printed with a larger nozzle size. I must point out that changing the nozzle is somewhat awkward if you don’t know how to do it properly. This is something which I will discuss in the full review of the machine afterwards. With the nozzle changed out, I then began tweaking my settings until I had something which worked fairly well. I’ll be doing quite a bit more tweaks before I finish this piece off but for now this is how the print came out.

1.75 to 2.85 – Changing Filament Type I3 Mega



Link to ThingInverse Files

In this video I explain the process of changing your FDM printer to take 2.85 filament.  The video also discusses whether or not making this mod might actually be worth it.  In This video I modded my I3 Anycubic Mega to take 2.85 instead of the standard 1.75.  I did this to see how complicated this process might be and some of the issues that could result.  This video explains the process and my findings.