Ender 3 V2 – How good is it?



Review

In today’s article, we’ll be taking a closer look at the Ender 3 V2 by Creality and see where it stands in today’s market.  I purchased this machine with my own money in order to do this review, so everything you see here is based on my own opinion.  

This is the updated version of the original Ender 3, and it does seem like the company may have implemented some customer recommendations.  First off, this machine does use silent stepper drivers, which greatly reduces the amount of noise during operation.  Very important to note, however, is that the stepper drivers are soldered to the board, making any future replacements or upgrades more difficult with this main board.  Although the motors moving the machine are silent, the fans which cool all the various components are not, and this should be taken into consideration. A great addition to this machine is the fuse for the main power input that’s located on the motherboard. This is the first time I’ve seen a company implement this safety feature, and I certainly hope to see other companies do so as well.

With the screen now fully enclosed, it also has a new modern interface which makes it easier for new users.  The one downside with this interface is that some functionality is no longer available with the more modern versions of marlin.  In this model, the screen uses a knob to control the interface, which is perfectly functional if perhaps slightly outdated. There is an issue with the contrast levels on the screen, thereby making it difficult to see what’s been selected.  This is especially prominent when looking at the screen from an angle which is to the side.

While the original print bed was flexible, it has since been upgraded to a glass bed, which is far more durable.  With a glass build plate, the prints will almost always release once the surface has cooled down, however if this isn’t the case you can use your filament cutter’s to help leverage the corner just enough to release the pressure or fit your spatula underneath.  During my testing, I found that most prints released without any issues after the first couple of prints. In most cases, unless you’re filling up the bottom surface with a large print, this is rarely an issue.  

Like most machines which use a very basic hot end, this one uses one which is prone to heat creep at around the 230 degree.  I highly recommend upgrading the standard Bowden tube with a Capricorn one to help prevent issues in the future.  Because of the current mounting design, it is fully compatible with the Micro Swiss all metal hot end and doesn’t require any modifications other than a firmware changes.  Creality has since released the Creality Sprite extruder upgrade, which is supposed to be compatible with this machine.  Since I have yet to test that particular upgrade, I can not say whether it’s worthwhile.  The cable for the hot end does tend to get caught if it isn’t properly secured.  In my case, I simply used a zip tie to fix the issue by attaching it to the adjustment screw of the extruder feeder.   

The power supply is incorporated into the base of the machine, unlike the original Ender 3.  It’s also been upgraded to a genuine Meanwell Power Supply, which makes it more reliable and safer.  Unfortunately, this machine in particular uses tinned connections, which I would highly recommend you replace since they could pose a safety hazard.  Like most of these companies machines, this one in particular does have properly functioning thermal runaway protection enabled. The only ventilation for the power supply is where the intake fan is located and is something that I would like to see revised in the future.  All the components, although they are properly contained, are fairly segmented in their locations. For instance, the power supply has its own enclosure as well as the motherboard.  While this isn’t really a problem, is can be inconvenient when doing repairs since you have to open up two different compartments within the base of the machine.

This machine uses only one Z axis, which is fine with this particular set of features.  If you’re looking to add a direct extruder, however, you will want to upgrade to a dual Z axis setup since the X carriage is very easy to move.  Because this machine comes with a Bowden tube setup, most of the weight is taken off the X carriage, and this hasn’t been an issue for me as yet.  

So how would I rate this machine overall?  Well I’ve used this exact model for both my contract work as well my own personal projects for well over a year now and can say that I’m very pleased with its operation.  Other than some very minor tweaks, it’s been my go-to machine for anything that fit’s it’s build size.  It’s for this reason that I give it a solid 8/10.  For the price, it’s well worth the money, and I’ve actually been debating whether to pick up another.  But is this the best that this machine has to offer?  Well, I’m going to be doing a series of upgrades to see which one’s might be worth it and comparing it to the newer release, so keep an eye out for that article.  

I’ve started creating downloadable support files and mods for the machines I’ve reviewed, so if you’re looking from some additional information, I would suggest you follow the link in the description below.  Thank you for watching, and I hope to see you again soon.  Thank you and take care.

Highlights

  • Tinned Wires
  • Glass Build Plate
  • Bowden Tube Setup
  • Thermal Runaway IS active
  • Meanwell Power Supply
  • Screen is Moderns with Turning Knob
  • Silent Stepper drivers are soldered

Mods Article Link


3D Printing a 15-Foot Dragon – Part 3 Printing





Transcript

Hello everybody and welcome to another video. Today is the third instalment of this miniseries, where I undertake the challenge of 3D printing a 15-foot dragon. In the last video, we took the concept art and turned this into a 3d printable model, from which could start the printing process.

At the time of starting this project, I had just gotten the CR30 which I had pre-ordered during the Kickstarter project, so after doing some initial tests I believed I was ready to begin printing. I therefore took my STL files and loaded these up into the slicer to begin testing my prints. From the beginning there were changes to be made to the models since there were certain areas which were printing incorrectly. After thickening up the wall and double-checking them in Cura to get rid of any artifacts, as I was able to proceed to the next stage.

Now by the time I had received this machine we had reached the warmest period of the year and with multiple machines running at the time I had to contend with fairly high temperatures along with much higher humidity level. The average temperature in my apartment was around 5 to 8 degrees warmer than outside, and that was with a poorly functioning air conditioner running at mid-power. The print bed adhesion was severely compromised as a result, not to mention that the filament I had purchased came in two different batches. Despite ordering the exact same filament, both batches required completely different temperatures. So with the sweltering heat I did my best to get the prints going for this machine, however things would prove far difficult than expected.

After a couple of successful prints, I began to notice 2 things. The first is that the prints weren’t sticking to the bed, and the second was that the prints were getting worse the more I printed with the machine. After several failed prints dislodged themselves from the print bed, I eventually figured out that I needed to wipe down the surface of the machine in isopropyl alcohol. The second batch of filament required a minimal hot end temperature of 210 along with a slightly higher build plate temperature. Although I had finally gotten the prints to stick down, they were still getting worse. After having tried changing the retractions, ooze amounts, printing heights, and temperature just to mention a few, nothing seemed to work, so I tried re-loading a previous file that had successfully printed. When that print also failed to complete I knew that the issue was mechanical in nature and after a month and a half of troubleshooting the answer finally came during an awful print failure. The extruder pressure was clearly too tight, since it had pushed it through the Bowden tube itself. I must admit, this is the first time I’ve ever seen this happen. After replacing the Bowden tube, it was here that I discovered what was causing the lack of material to extrude. The tip of the Bowden tube has burned and deformed due to heat creep. I ordered myself some Capricorn tubing and replaced it with this higher quality option. With this completed, I was finally able to extrude material once again and there was a remarkable improvement on the print quality. This meant that the higher temperatures of the new filament had caused excessive amounts of heat to creep up the hot end. With the 3d prints finally completing, I began printing the rest of the plates for the dragon.

Prior to beginning the full sized print of the head, I began fine-tuning my measurements in Blender with small scale resin prints of these parts. This allowed me to go through many alliterations at a quick pace prior to committing to the full print. This saved me several weeks of work, since I clearly had to make changes to my tolerances before proceeding to the full size. With these changes completed, I was now ready to start printing the final piece.

Throughout the printing process, I ran into constant issues with the time-lapse footage, but this was nothing in comparison to when it came to printing the full sized head. You see this portion was a 5-day print which included the jaw, top portion of the skull and the connector. I’m sure you guys can guess which part had an issue. If you guessed the top of the skull, then you would be correct, since the cable to the hot end got caught along the frame and caused the machine to start releasing random strings of filament. After this, I zip tied the cable to prevent this from happening a second time and attempted to restart the print where it left off. This is where I discovered the that machine itself seems to have a procedure in place to move the Z axis prior to starting any print, which in this case was what I wanted to avoid. In the end, I solved this issue by starting the print where it left off and manually aligning the print onto the bed while it started extruding filament. I believe this only worked because the head was already so heavy that it had enough weight to stay in place during the print. Although I did end up with a significant offset, the end result would still work once it was filled in.

With all the portions printed, it was now time to begin finishing and assembling the pieces prior to the painting process. But that will be a story for another day. I hope you guys enjoyed the journey so far, and I hope to see you guys soon. Thank you and take care.


CR10 Smart – Extruder Upgrade



Instructions

In today’s article, we’ll be covering how to replace the Feeder Extruder with the MK-8 on the CR10 Smart.  I purchased this upgrade kit with my own money for this upgrade, and as always do this mod at your own risk.

Now this feeder has a couple of good features which will make both this machine easier to maintain and more durable in the long run.  The stock feeder, has for many users of both the CR-6 SE and CR-10 Smart, caused quite a few issues due to its lack of durability and design.  Although the stock extruder has a convenient release mechanism for the filament, all the parts are currently made from a plastic which is prone to wearing over time, not to mention that the closed design makes it difficult for maintenance overall.  The MK-8 on the other hand, is an open design which is much simpler to assemble.  The model that you see here is also made from all metal parts, making it a longer lasting product.

So before we begin, I’d recommend laying out all the parts so that it’s easier to see everything as well as ensuring that we have all the required components.  For this kit in particular, there are 4 different screws, some of which are very similar in design.  If you have any filament that’s currently loaded, you’ll need to remove this prior to installing the components.

With the machine turned off, we’ll remove the old feeder from the machine by loosening the screws on the top cover.  We can then take the second set of screws out while holding the motor in place to prevent from damaging the build plate.

The first part we’ll put together is the adjustment arm, since this is easier to address while the part isn’t currently installed. For this we’ll need the washer, U-bearing and the M4 Screw that we’ll assemble into this portion of the arm.  You want to make sure that the screw is tight enough to hold the U-bearing in place, but not tight enough to prevent any movement.  We’ll then add one of the next set of screws (There should be 3 of them, but we’ll only be using one for now), which will help hold the spring into place later on.  For the baseplate, we can pre-install the Bowden tube connector.  In this case we don’t need to adjust the extrusion gear since it should already be set to the correct height, however you can check this by inserting some filament when this is fully assembled.

Using the Flat top screw, you’ll attach the motor to the baseplate and use these remaining 2 screws to fully secure it into place. The arm has a small metal piece which is designed to allow the adjustment arm to rotate freely, and we’ll put this in now before we add the tensioning spring.  This small component (looks like a screw but isn’t) is what allows us to adjust the tension on the spring, and goes together.  It’s easier to insert the spring first followed by the attachment screw and this should be pretty easy so long as you push these two portions together as you do so.  Make sure to tighten the attachment screw all the way to ensure a tight fit.  With this complete, we simply need to attach the Bowden tube and secure with the claw clamp.  


Compared to some machines, this model does have the ability to adjust the tension on the filament, but in most cases you simply need to tighten this slightly since too much can cause the filament to puncture the Bowden tube.  In general, it should be just tight enough to push the filament through, but be able to skip if there’s an extrusion issue.  So long as you’ve installed a Capricorn Tubing, you shouldn’t have any issues with heat creep in the extruder.

Personal Notes

  • MK-8 All metal Extruder
  • Lay parts out Prior to assembling
  • Keep the Extrusion Gear in place
  • Tension should be just enough to push filament through

CR10 Smart (Regular) Mods


CR10 Smart Review – How Good Is It?



Transcript



Hello everybody and welcome to another video. In today’s review, we’ll be taking a closer look at the CR10 Smart by Creality and see what these machines have to offer. Full disclaimer, I purchased this machine with my own money in order to do this review, so everything you see here is based on my own opinion.

While I originally intended to release this review several months ago, I was surprised to discover quite a few hurdles in getting this machine ready for testing, as you’ll see shortly. So to start things off, I opened up the box to double-check all the components and put this machine together. The main change in the design is the incorporation of the electronics within the base of the machine. When I opened up the box, the spool holder was already broken where the ball bearings were located. This area should have been designed with a metal insert, however it simply had a screw which was supported by a thin plastic. In my case, I was able to substitute this, a similar attachment that I had left over from my Ender 3 V2. One great feature on this machine is that all the tools required to maintain it are located in a convenient shelf. This make it much easier when performing maintenance since everything is located and organized nearby.

After putting together the machine, I opened up the bottom panel to begin testing all the safety features. In order to properly test the thermal runaway, I had to actually create connection adapters. The company has created custom pin connections for all the components in the hot end assembly. This means that those portions are not so easily swapped out via the motherboard connection and instead have to be done via the connection hub that’s on the X gantry. After testing everything out, I was happy to discover that there was indeed proper thermal runaway protection enabled in both the stock version of the firmware and the updated version. Now this machine comes with a low quality Bowden tube and is one of the first recommendations I have for an upgrade since it can make a huge difference in prevent issues down the road. I have unfortunately found that on most of Creality’s machines, the stock hot end is prone to heat creep and therefore this is a good preventative measure.

Updating the firmware is not intuitive at all and has specific requirements in order to be successful. I personally believed I had bricked my machine until I discovered the usual requirements that it had. In order to do a proper update, you need to fulfill 3 main factors. You have to use the proper sized SD cards which has been formatted correctly, you must hold the power button on during the full update and the .bin file must use a different name every time an update is done. These were just some requirements, and once again I had to pause the review in order to make a video showing the proper procedure so that others would have an easier time doing this for themselves.

But why did I need to update the firmware, you ask? Well, everything time I attempted to print in vase mode, I ended up with something like this. As you can see, it didn’t quite print correctly and ended up taking 10x times the amount of time it was supposed to. To be clear, the company doesn’t recommend that you use anything but their skinned version of the Cura slicer, and I was using the most up-to-date version of Cura at the time, but this is the first machine that’s ever given me this results. While printing, I noticed that the machine was pausing continuously, which was leading to longer print times and this bubbled look. After quite a bit of troubleshooting which did include disabling the Creality Wifi Box that’s been integrated into the machine, I was finally able to solve the issue by updating the firmware. If you are using Cura I will include two Start Gcode options that I’ve tested and can confirm work correctly. The first will be the one provided by David Hart and the second one will the one that I’m currently using. Both of these will be in the download package on my website along with my custom Cura Profile.

One great feature of this machine is its ability to shut down vial the screen or after a 3d print has completed. This is a great feature to have and is something that I would like to see other companies implement in the future, however it does come with some tradeoffs that would need to be addressed in future versions. I suspect that the implementation of this feature is what makes updating the firmware less intuitive, since it requires that the user keep pressing the power button in order for it to fully complete.

This machine does indeed have tinned connections, and I would recommend replacing those for ferrule one’s. Once again, I have already created a specific video for this machine which can refer to. While opening up the machine to check for tinned wires, I also came across the device which was supposed to enable wifi connectivity. If any of you have seen my video on the Creality smart kit, you’ll be aware of my experiences regarding that device, and it’s implementation. Since that device has already been featured in another video, I will not be revisiting that portion in this review. I will say however that during my troubleshooting steps, I did have to disable the wifi box and re-enable the USB connection to the motherboard. I’ll include a link to that in the description below if you also want to do the same.

The build plate auto levelling is poorly implemented and has caused several issues for both me and others online. I personally had to add manual bed levelling in order to properly test the machine’s capabilities. As it turns out, I can say that there’s a small amount of levelling, however it is very inaccurate. I did follow Creality’s bed levelling guidelines prior to running my tests, with mixed results. It is very important to note that the print bed and hot end must be stable and not wobble in order to work correctly. There are tensioner nuts for ensuring this, and if you have any issues with your machine this should be the first thing that you check. In this case it’s far less critical that the pulley wheels have even tension, instead the stability is far more essential. After adding tensioner knobs to my printer, I was able to test whether bed levelling was fully functional, and unfortunately it seems like the machine has issues with accuracy. Even after using the start Gcode by David Hart there were still issues with bed levelling which made it unpredictable. Upon doing further research, I did come across an article by Sebastiaan Dammann which suggests that it could be electrical interference that’s causing the issue and that it could be fixed with a firmware update. Unfortunately the screen that comes with the CR10 Smart makes creating a community firmware difficult and since Creality has not yet released the source code for the machine this is likely to continue being an issue. I have already released the video for adding manual bed levelling to your printer, so if nothing else has worked, and you’ve already updated the firmware, you could try that as well.

The extruder on this machine is quite unique in itself in that I have a locking mechanism for the filament, which does indeed make it easier to feed the filament through. Now, although the machine does come with a transparent plastic that can fit into the gap that’s between the sensor and extruder, I would not recommend using it at all. If there’s a jam, you’ll find it difficult to remove the broken filament if you have this installed. The easiest way to tell if the extruder is in it’s locked state is to give the filament a simple tug and see if it moves back and forth. I personally drew a little padlock so that I would have more visual reference, so that may be something you wish to do as well.

This machine does come with quite a few quality life improvements such as belt tensioners, filament run out, silent stepper motors, dual Z axis motors, built in mosfets and thermal runaway. However, with all these elements, there’s still the glaring issues which a user will most likely have to address. This is unfortunate to say the least, since I really do like this machine now that those issues have been fixed. The out-of-the-box experience is quite bad and isn’t something I can not recommend to a new user at all. For someone who’s a tinkerer and is willing to put in the hours that’s needed to get a functional machine, I give it a 4/10 since the likelihood of the machine working correctly out of the box is very low. This machine is specifically marketed towards new users, and therefore I’m rating it as such. I’ve found this machine to be a missed opportunity and with the potential release of the CR10 Smart Pro I have serious concerns about that machine as well. If a company isn’t able to release a regular version which is fully functional, I have reservations regarding the pro version. It suggests to me that the company was using its user base as beta testers, which in today’s age is unacceptable. Perhaps once the company has release the source code or started providing upgrade kits which fix the current issues, this rating could potentially be revisited.


Exit mobile version